Processamento De Sinal De Filtro Médio Móvel


Garoto, PeterK. Não consigo imaginar uma verdadeira fase linear e um filtro causal verdadeiramente IIR. Eu não posso ver como você obteria simetria sem que a coisa seja FIR. E, semanticamente, eu chamaria um Trunk IIR (TIIR) um método de implementação de uma classe de FIR. E então você não obtém uma fase linear, a menos que você faça a coisa filtfilt com ela, em bloco, sorta como Powell-Chau. Ndash robert bristow-johnson 26 de novembro às 15:32 Esta resposta explica como funciona o filtfilt. Ndash Matt L. 26 de novembro 15 às 7:48 Um filtro de média móvel de fase zero é um filtro FIR de comprimento ímpar com coeficientes onde N é o comprimento do filtro (estranho). Uma vez que hn tem valores não-zero para nlt0, não é causal e, conseqüentemente, ele só pode ser implementado adicionando um atraso, ou seja, tornando-o causal. Observe que você não pode simplesmente usar a função Matlabs filtfilt com esse filtro porque, mesmo que você obtenha uma fase zero (com um atraso), a magnitude da função de transferência de filtros fica ao quadrado, correspondendo a uma resposta de impulso triangular (ou seja, amostras de entrada mais distantes do Amostra atual recebe menos peso). Esta resposta explica com mais detalhes o que o filtfilt faz. Preciso projetar um filtro de média móvel que tenha uma freqüência de corte de 7,8 Hz. Eu usei filtros de média móvel antes, mas, na medida em que eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso se relaciona com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e estou trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho médio da janela de filtro móvel de 130 amostras, ou há algo mais que eu estou faltando aqui? 18 de julho 13 às 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O som adicionado e também para fins de suavização, mas se você usar o mesmo filtro de média móvel no domínio de freqüência para a separação de freqüência, o desempenho será o pior. Então, nesse caso, use filtros de domínio de freqüência ndash user19373 3 de fevereiro 16 às 5:53 O filtro de média móvel (às vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, afirmado de forma diferente: lembrando que uma resposta de freqüência de sistemas de tempo discreto É igual à transformação de Fourier de tempo discreto de sua resposta de impulso, podemos calcular da seguinte maneira: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (omega). Usando algumas manipulações simples, podemos obter isso de forma mais fácil de entender: isso pode não parecer mais fácil de entender. No entanto, devido à identidade do Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse anteriormente, o que você realmente está preocupado é a magnitude da resposta de freqüência. Então, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Podemos soltar os termos exponenciais porque eles não afetam a magnitude do resultado e 1 para todos os valores de omega. Uma vez que xy xy para dois números complexos finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta global de magnitude (em vez disso, eles afetam a resposta de fase de sistemas). A função resultante dentro dos suportes de magnitude é uma forma de um kernel Dirichlet. Às vezes, é chamado de função periódica sinc, porque se parece com a função sinc algo em aparência, mas é periodicamente. De qualquer forma, uma vez que a definição de frequência de corte é pouco especificada (ponto -3 dB -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Ajuste H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina omega igual à frequência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se de que omega 2pi frac, onde fs é a taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Esse deve ser o comprimento da sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erros Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui, finalmente, qual era a abordagem seguida. O resultado baseou-se na aproximação do espectro de amplitude MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aprox. 1 (frac - frac) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac, multiplicando Omega por um coeficiente de obtenção de MA (Omega) aproximadamente 10.907523 (frac-frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Todo o acima se relaciona com a frequência de corte -3dB, o assunto desta publicação. Às vezes, é interessante obter um perfil de atenuação em stop-band que é comparável ao de um filtro de passagem baixa IIR de 1ª ordem (LPF de um único pólo) com uma freqüência de corte de -3dB dada (como um LPF também é chamado de integrador vazado, Tendo um pólo não exatamente na DC, mas perto disso). De fato, tanto o MA quanto o LPR de 1ª ordem IIR têm uma inclinação de -20dBdecade na banda de parada (um precisa de um N maior do que o usado na figura, N32, para ver isso), mas enquanto o MA tem nulos espectrales no FkN e um Por um lado, o filtro IIR possui apenas um perfil 1f. Se alguém quiser obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR e corresponda às freqüências de corte 3dB para serem iguais, ao comparar os dois espectros, ele perceberia que a ondulação da faixa de parada do filtro MA termina 3dB abaixo do do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR, as fórmulas podem ser modificadas da seguinte forma: encontrei o script Mathematica onde eu calculava o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com o MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1 quadrado a partir daí. Ndash Massimo 17 de janeiro 16 às 2: 08 O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Parentes do filtro de média móvel Em um mundo perfeito, os designers de filtros só precisam lidar com informações codificadas no domínio do tempo ou no domínio da freqüência, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, sinais de televisão se enquadram nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com sua composição de freqüência, como sua largura de banda total, como as ondas de suporte para cor de amplificador de som são adicionadas, restauração de amplificação de eliminação do componente de CC, etc. Como outro exemplo, interferência eletromagnética É melhor entendido no domínio de freqüência, mesmo que a informação de sinais seja codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz de uma fonte de alimentação de comutação ou 1320 kHz de uma estação de rádio AM local. Parentes do filtro de média móvel têm melhor desempenho de domínio de freqüência e podem ser úteis nestas aplicações de domínio misto. Os filtros médios móveis de passagem múltipla envolvem passar o sinal de entrada através de um filtro médio móvel duas ou mais vezes. A Figura 15-3a mostra o kernel geral do filtro resultante de uma, duas e quatro passagens. Duas passagens equivalem a usar um kernel de filtro triangular (um kernel de filtro retangular convolvido com ele próprio). Após quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Conforme mostrado em (b), as passagens múltiplas produzem uma resposta de passo em forma de S, em comparação com a linha reta da única passagem. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si mesmo por cada passagem. Ou seja, cada vez que a convolução do domínio resulta em uma multiplicação dos espectros de freqüência. A Figura 15-4 mostra a resposta de freqüência de dois outros familiares do filtro de média móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência também é gaussiana, conforme discutido no Capítulo 11. O gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e manmade. Por exemplo, um breve pulso de luz entrando em uma longa linha de transmissão de fibra óptica sairá como um pulso gaussiano, devido aos diferentes caminhos captados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem rápidas ondulações bidimensionais (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde ao uso de uma janela Blackman como kernel de filtro. (A janela do termo não tem significado aqui é simplesmente parte do nome aceito desta curva). A forma exata da janela Blackman é dada no Capítulo 16 (Eq. 16-2, Fig. 16-2) no entanto, parece muito com um gaussiano. Como estes parentes do filtro de média móvel melhor do que o filtro de média móvel em si. Três maneiras: primeiro e mais importante, esses filtros têm melhor atenuação de parada do que o filtro de média móvel. Em segundo lugar, os grãos de filtro se afilam a uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas passo a passo são curvas suaves, em vez da linha direta abrupta da média móvel. Estes últimos dois geralmente são de benefício limitado, embora você possa encontrar aplicativos onde eles são vantagens genuínas. O filtro de média móvel e seus parentes são quase iguais em reduzir o ruído aleatório enquanto mantém uma resposta passo a passo. A ambigüidade reside na forma como o tempo de subida da resposta passo é medido. Se o tempo de subida for medido de 0 a 100 da etapa, o filtro médio móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 a 90 torna a janela Blackman melhor do que o filtro de média móvel. O argumento é que isso é apenas dificuldades teóricas consideram esses filtros iguais neste parâmetro. A maior diferença nesses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito em seguida), o filtro de média móvel funcionará como um raio em seu computador. Na verdade, é o filtro digital mais rápido disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda muito rápidas. Em comparação, os filtros gaussianos e negros são incrivelmente lentos, porque devem usar convolução. Acho um fator de dez vezes o número de pontos no kernel do filtro (com base na multiplicação sendo cerca de 10 vezes mais lento do que a adição). Por exemplo, espere que um gaussiano de 100 pontos seja 1000 vezes mais lento do que uma média móvel usando recursão.

Comments

Popular posts from this blog

Trading Strategies In Option Pdf

Opções Trading Course Mumbai

Online Trading System In India